Statistical mechanics of neocortical interactions: Nonlinear columnar electroencephalography
نویسنده
چکیده
ABSTRACT: Columnar firings of neocortex, modeled by a statistical mechanics of neocortical interactions (SMNI), are investigated for conditions of oscillatory processing at frequencies consistent with observed electroencephalography (EEG). A strong inference is drawn that physiological states of columnar activity receptive to selective attention support oscillatory processing in observed frequency ranges. Direct calculations of the Euler-Lagrange (EL) equations which are derived from functional variation of the SMNI probability distribution, giving most likely states of the system, are performed for three prototypical Cases, dominate excitatory columnar firings, dominate inhibitory columnar firings, and in-between balanced columnar firings, with and without a Centering mechanism (CM) (based on observed changes in stochastic background of presynaptic interactions) which pulls more stable states into the physical firings ranges. Only states with the CM exhibit robust support for these oscillatory states. These calculations are repeated for the visual neocortex, which has twice as many neurons/minicolumn as other neocortical regions. These calculations argue that robust columnar support for common EEG activity requires the same columnar presynaptic parameter necessary for ideal short-term memory (STM). It is demonstrated at this columnar scale, that both shifts in local columnar presynaptic background as well as local or global regional oscillatory interactions can effect or be affected by attractors that have detailed experimental support to be considered states of STM. Including the CM with other proposed mechanisms for columnar-glial interactions and for glial-presynaptic background interactions, a path for future investigations is outlined to test for quantum interactions, enhanced by magnetic fields from columnar EEG, that directly support cerebral STM and computation by controlling presynaptic noise. This interplay can provide mechanisms for information processing and computation in mammalian neocortex.
منابع مشابه
Neocortical Dynamics at Multiple Scales : EEG Standing
The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical ...
متن کاملStatistical mechanics of neocortical interactions . Dynamics of synaptic modification
A recent study has demonstrated that several scales of neocortical interactions can be consistently analyzed with the use of methods of modern nonlinear nonequilibrium statistical mechanics. The formation, stability, and interaction of spatial-temporal patterns of columnar firings are explicitly calculated, to test hypothesized mechanisms relating to information processing. In this context, mos...
متن کاملStatistical Mechanics of Neocortical Interactions: a Scaling Paradigm Applied to Electroencephalography Statistical Mechanics of Neocortical ... -2- Lester Ingber
A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of synaptic interactions. While not useful to yield insights at the single neuron level, SMNI has demonstrated its capability in describing large-scale properties of short-term memor...
متن کاملStatistical Mechanics of Neocortical Interactions. I. Basic Formulation
An approach to collective aspects of the neocortical system is formulated by methods of modern nonlinear nonequilibrium statistical mechanics. Microscopic neuronal synaptic interactions, consistent with anatomical observations, are first spatially averaged over columnar domains. These spatially ordered domains retain contact with the original physical synaptic parameters, are consistent with ob...
متن کاملStatistical mechanics of neocortical interactions. Derivation of short-term-memory capacity
A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009